
Modern Assembly Language Programming
with the

ARM processor
Chapter 13: Common System Devices



1 Clock Management

2 Serial Communications



Clock Management

CPU Cache

Manager

Clock Memory
I/O

Device Device

I/O I/O

Device

System Bus

· · ·

Typical system with a clock management device.



Raspberry Pi Clock Manager

Provides a large number of clock signals to drive various devices.

Each clock signal can be driven by one of 16 source clocks.

Number Name Frequency Note
0 GND 0 Hz Clock is stopped
1 oscillator 19.2 MHz
2 testdebug0 Unknown Used for system testing
3 testdebug1 Unknown Used for system testing
4 PLLA 650 MHz May not be aviailable
5 PLLC 200 MHz May not be aviailable
6 PLLD 500 MHz
7 HDMI auxillary Unknown

8–15 GND 0 Hz Clock is stopped



Raspberry Pi Clock Manager (continued)

Some registers in the clock manager device:

Offset Name Description
07016 CM_GP0_CTL GPIO Clock 0 (GPCLK0) Control
07416 CM_GP0_DIV GPIO Clock 0 (GPCLK0) Divisor
07816 CM_GP1_CTL GPIO Clock 1 (GPCLK1) Control
07c16 CM_GP1_DIV GPIO Clock 1 (GPCLK1) Divisor
08016 CM_GP2_CTL GPIO Clock 2 (GPCLK2) Control
08416 CM_GP2_DIV GPIO Clock 2 (GPCLK2) Divisor
09816 CM_PCM_CTL Pulse Code Modulator Clock (PCM_CLK) Control
09c16 CM_PCM_DIV Pulse Code Modulator Clock (PCM_CLK) Divisor
0a016 CM_PWM_CTL Pulse Modulator Device Clock (PWM_CLK) Control
0a416 CM_PWM_DIV Pulse Modulator Device Clock (PWM_CLK) Divisor
0f016 CM_UART_CTL Serial Communications Clock (UART_CLK) Control
0f416 CM_UART_DIV Serial Communications Clock (UART_CLK) Divisor



pcDuino Clock Signals

Provides a small number of clock signals to drive various devices.

Clock Domain Modules Frequency Description

OSC24M Most modules 24MHz Main clock
CPU32_clk CPU 2KHz – 1.2GHz Drives CPU
AHB_clk AHB devices 8KHz – 276MHz Drives some devices
APB_clk Peripheral bus 500Hz – 138MHz Drives some devices
SDRAM_clk SDRAM 0Hz – 400MHz Drives SDRAM memory
USB_clk USB 480MHz Drives USB devices



Serial Communications

Universal Asynchronous Receiver/Transmitter (UART)

“Universal” indicates that the device is highly configurable and flexible.

“Asynchronous” means that a receiver and transmitter can communicate without
a synchronizing signal.

To transfer a group of bits, called a data frame, the transmitter typically first
sends a start bit.

After each group of data bits, the transmitter will return the signal to the low
state and keep it there for some minimum period called the stop bits. (typically
the time it would take to send two bits of data)

The stop bits allow the receiver to have some time to process the received byte
and prepare for the next start bit.



Transmission

-15V

15V

-3V

3V

Idle Start Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Stop Stop Idle

0 1 0 1 0 1 1 0

Waveform of a UART transmitting 5616 (the ASCII ‘V’ character).

The UART enters the idle state only if there is not another byte immediately
ready to send.

If the transmitter has another byte to send, then the start bit can begin at the
end of the second stop bit.



Reception with Clock Mismatch

Transmitter

-15V

15V

-3V

3V

Idle Start Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Stop Stop Idle

0 1 0 1 0 1 1 0

Receiver

-15V

15V

-3V

3V

Idle Start Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Stop Stop Idle

Start Detected 0 1 0 1 0 1 1 0



Raspberry Pi UART0

The PL011 UART is similar to industry standard 16550A UART

Offset Name Description

0016 UART_DR Data Register
0416 UART_RSRECR Receive Status Register/Error Clear Register
1816 UART_ FR Flag register
2016 UART_ILPR not in use
2416 UART_IBRD Integer Baud rate divisor
2816 UART_FBRD Fractional Baud rate divisor
2c16 UART_LCRH Line Control register
3016 UART_CR Control register
3416 UART_IFLS Interupt FIFO Level Select Register
3816 UART_IMSC Interupt Mask Set Clear Register
3c16 UART_RIS Raw Interupt Status Register
4016 UART_MIS Masked Interupt Status Register
4416 UART_ICR Interupt Clear Register
4816 UART_DMACR DMA Control Register
8016 UART_ITCR Test Control register
8416 UART_ITIP Integration test input reg
8816 UART_ITOP Integration test output reg
8c16 UART_TDR Test Data reg



Data Register

Read to receive, write to transmit.
Bits 8-11 give status for the byte received.

Bit Name Description Values

7–0 DATA Data Read: Last data received
Write: Data byte to transmit

8 FE Framing error 0: No error
1: The received character did not have a valid stop bit

9 PE Parity error

0: No error
1: The received character did not have the correct parity, as

set in the EPS and SPS bits of the Line Control Register
(UART_LCRH)

10 BE Break error

0: No error
1: A break condition was detected. The data input line was

held low for longer than the time it would take to receive a
complete byte, including the start and stop bits.

11 OE Overrun error
0: No error
1: Data was not read quickly enough, and one or more bytes

were overwritten in the input buffer

31–12 - Not used Write as zero, read as don’t care



Calculating the Baud Rate Divisor

BAUDDIV = UARTCLK
16×Baudrate

UARTCLK is the frequency of the UART_CLK that is configured in the Clock
Manager device. The default value is 3 MHz.

BAUDDIV should be calculated as a U(16,6) fixed point number.

BAUDDIV is stored in two registers

UART_IBRD holds the integer part and

UART_FBRD holds the fractional part.



pcDuino UART

The pcDuino includes eight UART devices that are fully compatible with the 16550A
UART

UART addresses:

Name Address

UART0 0x01C28000
UART1 0x01C28400
UART2 0x01C28800
UART3 0x01C28C00
UART4 0x01C29000
UART5 0x01C29400
UART6 0x01C29800
UART7 0x01C29C00



pcDuino UART Registers

Register Name Offset Description

UART_RBR 0x00 UART Receive Buffer Register
UART_THR 0x00 UART Transmit Holding Register
UART_DLL 0x00 UART Divisor Latch Low Register
UART_DLH 0x04 UART Divisor Latch High Register
UART_IER 0x04 UART Interrupt Enable Register
UART_IIR 0x08 UART Interrupt Identity Register
UART_FCR 0x08 UART FIFO Control Register
UART_LCR 0x0C UART Line Control Register
UART_MCR 0x10 UART Modem Control Register
UART_LSR 0x14 UART Line Status Register
UART_MSR 0x18 UART Modem Status Register
UART_SCH 0x1C UART Scratch Register
UART_USR 0x7C UART Status Register
UART_TFL 0x80 UART Transmit FIFO Level
UART_RFL 0x84 UART_RFL
UART_HALT 0xA4 UART Halt TX Register



Setting the BAUD Rate

The baud rate is set using a 16-bit Baud Rate Divisor

BAUDDIV = sclk
16×Baudrate

sclk is the frequency of the UART serial clock, which is configured by the Clock
Manager device. The default frequency of the clock is 24 MHz.

BAUDDIV should be calculated as a sixteen bit unsigned integer.

BAUDDIV is stored in two registers.

UART_DLL holds the least significant eight bits, and

UART_DLH holds the most significant eight bits.

Note that for high baud rates, it may not be possible to get exactly the rate desired.

For example, a baud rate of 115200, would require a divisor of 13.02083

A divisor of 13 gives a baud rate of 24000000
16×13 = 115384.615385, or about 0.16% faster

than desired.

Although slightly fast, it is well within the tolerance for RS232 communication.


	Clock Management
	Serial Communications

